
Dr Louise Brown

Computer Engineering
and Mechatronics

MMME3085

Part 2

Software Engineering Best Practice

Development

Having decided on the low level design we are in a position to start writing some
code.

We need to think about:

▪ The tools that we use to make the coding process more straightforward and
robust

▪ The practise of writing good code

▪ There may be some overlap between the two (e.g. using a debug
environment combined with coding techniques to identify bugs)

▪ How will we keep a track of changes to the code, particularly if being
developed by a group

▪ How do we keep the code safe in the event of a system crash?

▪ How do we share code with our fellow developers?

The tools used for code development

Having decided on the low level design we are in a position to start writing some
code.

We need to think about:

▪ The tools that we use to make the coding process more straightforward and
robust

▪ What editor or development environment will be used?

▪ How do we create build files (important once a project has more files)?

▪ How do we find bugs?

▪ The practise of writing good code

▪ There may be some overlap between the two (e.g. using a debug
environment combined with coding techniques to identify bugs)

▪ How will we keep a track of changes to the code, particularly if being
developed by a group

▪ How do we keep the code safe in the event of a system crash?

▪ How do we share code with our fellow developers?

5

Use an IDE (Integrated Development Environment)

Include features such as:

• Code editor

• Debugging facility

• Compiler

• Profiler

• Auto code-completion

• Version control integration

• …and many more

Many IDEs will support multiple

languages

IDE C/C++ Fortran Pytho

n

MATLAB Windows Linux/Un

ix

MacOS

Eclipse Eclipse

CDT

Eclipse

Photran

Using

PyDev

✓ ✓ ✓

Code::Blocks ✓ Code::Blocks

IDE for

Fortran

✓ ✓

Visual Studio Code ✓ ✓ ✓ ✓ ✓ ✓

PyCharm ✓ ✓ ✓ ✓

Spyder ✓ ✓ ✓ ✓

MATLAB ✓ ✓ ✓ ✓

Microsoft Visual Studio. Community Edition is

free, Professional and Enterprise are paid.

✓ ✓ ✓ ✓ ✓

And many more…

Python: https://realpython.com/python-ides-code-editors-guide/

C: https://www.geeksforgeeks.org/10-best-ides-for-c-or-cpp-developers-in-2021/

Fortran: https://cyber.dabamos.de/programming/modernfortran/editors-and-ides.html

https://www.eclipse.org/ide/
https://projects.eclipse.org/projects/tools.cdt
https://projects.eclipse.org/projects/tools.cdt
https://projects.eclipse.org/projects/tools.ptp.photran
https://www.pydev.org/
https://www.codeblocks.org/
https://cbfortran.sourceforge.io/
https://cbfortran.sourceforge.io/
https://cbfortran.sourceforge.io/
https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/
https://github.com/spyder-ide/spyder
https://uk.mathworks.com/?s_tid=gn_logo
https://visualstudio.microsoft.com/vs/community/
https://realpython.com/python-ides-code-editors-guide/
https://www.geeksforgeeks.org/10-best-ides-for-c-or-cpp-developers-in-2021/
https://cyber.dabamos.de/programming/modernfortran/editors-and-ides.html

The tools used for code development

Having decided on the low level design we are in a position to start writing some
code.

We need to think about:

▪ The tools that we use to make the coding process more straightforward and
robust

▪ What editor or development environment will be used?

▪ How do we create build files (important once a project has more files)?

▪ How do we find bugs?

▪ The practise of writing good code

▪ There may be some overlap between the two (e.g. using a debug
environment combined with coding techniques to identify bugs)

▪ How will we keep a track of changes to the code, particularly if being
developed by a group

▪ How do we keep the code safe in the event of a system crash?

▪ How do we share code with our fellow developers?

8

Creating build files

With a small number of files it is possible to generate the
command to build and link code by hand

Generate debugging
information

9

Tools for creating build files

There are various tools which can be used to automate the generation of build
files.
Which one is chosen may depend on the programming language and operating
system. A comprehensive list can be found here:
https://en.wikipedia.org/wiki/List_of_build_automation_software

https://en.wikipedia.org/wiki/List_of_build_automation_software

10

Tools for creating build files

• In VSCode we have been using the C/C++ Runner extension to generate the
build file automatically.

• TexGen uses CMake as this allows C++ to be built on multiple platforms.
• A CMakeLists.txt file is produced for each project which tells CMake

where to look for required files, executables and libraries
• When CMake runs it processes the CMakeLists files and generates the

build file automatically

The tools used for code development

Having decided on the low level design we are in a position to start writing some
code.

We need to think about:

▪ The tools that we use to make the coding process more straightforward and
robust

▪ What editor or development environment will be used?

▪ How do we create build files (important once a project has more files)?

▪ How do we find bugs?

▪ The practise of writing good code

▪ There may be some overlap between the two (e.g. using a debug
environment combined with coding techniques to identify bugs)

▪ How will we keep a track of changes to the code, particularly if being
developed by a group

▪ How do we keep the code safe in the event of a system crash?

▪ How do we share code with our fellow developers?

The practise of writing good code

Superior coding techniques and programming practices
are hallmarks of a professional programmer.

The bulk of programming consists of making a large
number of small choices while attempting to solve a
larger set of problems.

How wisely those choices are made depends largely upon
the programmer's skill and expertise. 1

1 https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx

https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx

13

The Practise of Writing Good Code: Functions

Where possible use a title which describes what both what
the function does and an object
• PrintDocument()
• CalcPenPosition()
• CalcStartPosition()

Try to keep a function for one purpose only. For example don’t write a
function to calculate some variables and then plot them. Create two
functions – you may also want to do the calculations without plotting
and a general purpose plot function is more likely to be reused.

If you find yourself repeating a very similar piece of code around your
program it should probably be a function

Where possible, limit the number of parameters passed. Make
sure all parameters are used.

The Practise of Writing Good Code

Even though we’ve selected an IDE and designed code to the level of

function definitions there is another step before actually writing the code:

Pseudocode - a plain language description of how an algorithm, function,

class or program will work.

• Describe specific operations using English-like statements

• Do not use syntax from the final programming language

• Write at the level of intent. Describe the meaning rather than how it will be

done

• If the pseudocode is written in the IDE as comments these will stay in

your code

• Write at a low enough level that generating the code will be almost

automatic. It may be an iterative process.

Example Pseudocode

ReadShape(fileHandle, ShapeData)
{
 read shape name from file
 read number of strokes from file

 allocate memory for number of pen strokes
 if failed to allocate memory
 return false
 endif
 for each stroke in file
 read x coord into ShapeData penStroke array
 read y coord into ShapeData penStroke array
 read pen up/down into ShapeData penStroke array
 end loop

return true
}

Best Practice – a guide

• As you start to develop code that will be both shared and that will ‘grow’
over time it is important that you start to adopt some best practices

• Often companies will have their own ‘house’ style

• For example, how to align the brackets when ‘blocking’ code for an
loop/condition etc.

• This best practice guide produced by Microsoft is a few years old but still
provides examples of very good practice:

• https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx

• Another, more general guide is given here:

• https://mitcommlab.mit.edu/broad/commkit/coding-and-comment-
style/

• Links at the end of the page give style guides for specific languages.

https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx
https://mitcommlab.mit.edu/broad/commkit/coding-and-comment-style/
https://mitcommlab.mit.edu/broad/commkit/coding-and-comment-style/

The tools used for code development

Having decided on the low level design we are in a position to start writing some
code.

We need to think about:

▪ The tools that we use to make the coding process more straightforward and
robust

▪ What editor or development environment will be used?

▪ How do we create build files (important once a project has more files)?

▪ How do we find bugs?

▪ The practise of writing good code

▪ There may be some overlap between the two (e.g. using a debug
environment combined with coding techniques to identify bugs)

▪ How will we keep a track of changes to the code, particularly if being
developed by a group

▪ How do we keep the code safe in the event of a system crash?

▪ How do we share code with our fellow developers?

Debugging

“Everyone knows that debugging is twice as hard as writing

a program in the first place. So if you're as clever as you

can be when you write it, how will you ever debug it?”

 - Brian Kernighan

“Software quality must be built in from the start. The best way to

build a quality product is to develop requirements carefully, design

well, and use high-quality coding practices. Debugging is a last

resort”
McConnell, S. (2004). Code Complete, Microsoft Press.

Debugging

How not to debug!

• By guessing:

• Scatter code with print statements

• Randomly change things until it works

• Don’t back up original version

• Don’t keep notes

• By not spending time understanding the problem

• Fixing the problem with a workaround

• Make a special case to deal with the error

21

Debugging tools

Source-code comparators

• Diff, WinDiff or git diff to see what has changed from the last working version

Compiler warning messages

• Set the compiler to the highest warning level

• Uninitialised variables, pointers etc often cause problems

• Some compilers allow warnings to be treated as errors

Lint utility and static code analysis tools

• Check for code issues

Symbolic debugger

• Part of the IDE

• Use to step through code to see exactly what the code is doing

• It won’t solve the problem for you – it will help you to find it

• Great for understanding someone else’s code

• Set breakpoints to home in on a particular part of the code

The tools used for code development

Having decided on the low level design we are in a position to start writing some
code.

We need to think about:

▪ The tools that we use to make the coding process more straightforward and
robust

▪ What editor or development environment will be used?

▪ How do we create build files (important once a project has more files)?

▪ How do we find bugs?

▪ The practise of writing good code

▪ There may be some overlap between the two (e.g. using a debug
environment combined with coding techniques to identify bugs)

▪ How will we keep a track of changes to the code, particularly if being
developed by a group

▪ How do we keep the code safe in the event of a system crash?

▪ How do we share code with our fellow developers?

Git Revisited

▪ git: To keep our code ‘safe’
▪ A free version control system

▪ It allows us to keep version of the code so we can ‘go back’

▪ We can ‘branch’ code to try things

▪ Share code with others who can then ‘check in’ code when they have finished with it

▪ https://git-scm.com/downloads

https://git-scm.com/downloads

Local git workflow

1

2 3

4

5

6 7

8

9

10

T1 T2

Trunk

Branch

Tag

Discontinued
branch

• Distributed system – have own version of the repository on local computer
• Using a remote repository gives backup and easier sharing between

developers
• Integrated into some IDEs eg VSCode, Visual Studio and Matlab
• Easy use of branches for experimental code development

Git workflow

Useful git blogs

▪Using VSCode and Git – useful blog

▪https://kbroman.org/github_tutorial/pages/init.html -
introduction to starting a new repository using the
command line

https://www.gitkraken.com/blog/vs-code-git
https://kbroman.org/github_tutorial/pages/init.html
https://kbroman.org/github_tutorial/pages/init.html

Project final submission

Software Project – Final Submission (20%)

▪Project submission – 3pm Thursday 14th December

▪Learning outcomes:

• To write robust code for a mechatronics
problem using a specification (as developed in
the project planning submission)

• To develop the documentation required to
allow the project to be developed by a team

Submission Requirements

Learning outcomes will be demonstrated in the submission documents by:

• Developing the code to fulfil the project brief, which is well structured and follows software engineering
good practice (e.g. well named variables, error trapping).

• Submit your VSCode project

• Providing a system manual which could be used by a software development team to maintain or
continue to develop the code including the following:

• A clear explanation of what the program does, including sample emulator output.

• Description of files used in the program

• Description of functions used in the program

• The function declarations (prototypes) for each function identifying whether parameters are input
or output and the return value (if any). You are encouraged to give a return value which indicates
successful execution or failure.

• Specification of the main data items used in the program.

• Test data which will validate the program, confirming conformance of the program/function to its
specification.

• Flowcharts which show the structure of the program

Robot Testing

Robot testing, AMB C09/10:

6th December: 9am – 1pm

8th December: 2pm – 6pm

13th December: 9am – 1pm

A spreadsheet will be made available closer to the dates

to sign up for a 15 minute testing slot.

Note – you can sign up for any of the dates (you don’t

need to stick to the date/time on your timetable)

fscanf

Nearly the same as scanf but must pass the file handle
created when the file was opened

fInput = fopen("fred.txt", “r");

fscanf(fInput, “%s %d”, charArray, &num);

Can read in more than
one item at once

calloc

Allocates space for n items of size bytes each and initialises each item to zero

void *calloc(size_t nitems, size_t size);

Prototypes in stdlib.h and alloc.h

Inputs:

• nitems: number of items to allocate memory for

• size: size, in bytes, of each item

Returns

• a pointer to the newly allocated block or

• NULL if not enough space exists.

free

Frees blocks allocated with
• malloc or

• calloc

Prototype is
void free (void *block);

Found in stdlib.h & alloc.h

Note:
• We must use this to return memory, it is NOT automatically done when
a function exits (only the pointer is released)

Storing an array of structures within a structure - static

define SIZE 10

struct POINT
{
 float x,y;
};

struct MULTI_POINTS
{
 char name[20];
 struct POINT point[SIZE];
};

int main()
{
 struct MULTI_POINTS Points;
 int i;

 for (i = 0; i < SIZE; i++)
{

Points.point[i].x = i;
Points.point[i].y = i;

}

 for (i = 0; i < SIZE; i++)
 printf(“Point %d: x = %f, y = %f\n”, i, Points.point[i].x, Points.point[i].y);
}

Structure MULTI_POINTS contains an array of POINT

structures. In this case we know the size of the array.

StructureArrays.c

Storing an array of structures within a structure – functions (1)

define SIZE 10

struct POINT
{
 float x,y;
};

struct MULTI_POINTS
{
 char name[20];
 struct POINT point[SIZE];
};

int main()
{
 struct MULTI_POINTS Points;
 int i;

 for (i = 0; i < SIZE; i++)
{

Points.point[i].x = i;
Points.point[i].y = i;

}

 for (i = 0; i < SIZE; i++)
 printf(“Point %d: x = %f, y = %f\n”, i, Points.point[i].x, Points.point[i].y);
}

How can we assign values to these

points within a function?

int main()
{
 struct MULTI_POINTS Points;
 int i;

 PopulatePointArray(&Points);

 for (i = 0; i < SIZE; i++)
 printf("Point %d: x = %f, y = %f\n", i, Points.point[i].x, Points.point[i].y);
}

void PopulatePointArray(struct MULTI_POINTS *points)
{
 int i;
 for (i = 0; i < SIZE; i++)
 {
 points->point[i].x = i;
 points->point[i].y = i;
 }
}

Storing an array of structures within a structure – functions (2)

Pass a pointer to the structure to the function

Declare the function parameter as a

pointer to a MULTI_POINTS structure

points is a pointer to the structure so use the

arrow notation to access its members StructureArraysFunc.c

Storing an array of structures within a structure – dynamic (1)

define SIZE 10

struct POINT
{
 float x,y;
};

struct MULTI_POINTS
{
 char name[20];
 struct POINT point[SIZE];
};

int main()
{
 struct MULTI_POINTS Points;
 int i;

 for (i = 0; i < SIZE; i++)
{

Points.point[i].x = i;
Points.point[i].y = i;

}

 for (i = 0; i < SIZE; i++)
 printf(“Point %d: x = %f, y = %f\n”, i, Points.point[i].x, Points.point[i].y);
}

What do we do if we don’t know the size

of the array at compile time?

Storing an array of structures within a structure – dynamic (2)

struct POINT
{
 float x,y;
};

struct MULTI_POINTS
{
 char name[20];
 struct POINT *point;
};

int main()
{
 struct MULTI_POINTS Points;
 int i;
 int numPoints = 0;

 printf("Please input number of points: ");
 scanf("%d", &numPoints);
 Points.point = calloc(numPoints, sizeof(struct POINT));

 // Use the array

 free(Points.point);
}

Declare a pointer to the structure type

Allocate the memory to the

pointer using malloc or calloc

Number of items

in the array

Size of each item in the array

(ie size of the POINT structure)

Finally, free up the memory

struct POINT
{
 float x,y;
};

struct MULTI_POINTS
{
 char name[20];
 struct POINT *point;
};

int main()
{
 struct MULTI_POINTS Points;
 int i;
 int numPoints = 0;

 printf("Please input number of points: ");
 scanf("%d", &numPoints);
 Points.point = calloc(numPoints, sizeof(struct POINT));

 // Use the array

 free(Points.point);
}

Storing an array of structures within a structure – dynamic (3)

To view elements of a dynamically

allocated array in the debugger use the

form *pointer@numelements in the

watch window.

Here it will take the form:
*(Points.point)@numPoints

StructureArraysDynamic.c

Storing an array of structures within a structure – functions (3)

The structure containing the dynamically allocated array can be used in the

function in exactly the same way but it will be necessary to pass the size of the

array as a parameter.

(An alternative could be to store the size of the array in the multi-point structure)

To view elements of the dynamically allocated array in the debugger use the form

*(points->point)@numPoints when viewing the code within the function

StructureArraysDynamicFunc.c

The strcmp function compares two strings. It returns a value of 0 if the
strings are identical. e.g:

if (strcmp(string1, string2) == 0)

{

 // Code to execute if strings are the same

}

Command Line Arguments

Chapter 21

Command Line Parameters

Command line parameters allow us to write programs that we pass parameters to directly, rather
than by using scanf (or equivalent)

Eg

 convert swap.dat output.txt

Program Name Command line parameters

main() parameters

We need to modify our ‘main’ to make use of these

 int main (int argc, char *argv[])

int argc

argc

This is a count of the command line parameters.

It must be at least 1, as the program name itself is classed as a command line
parameter.

char *argv[]

argv[]

This is a pointer to an array of strings that contain the parameters

As with all arrays, it starts at zero

 The zero element is the program name

So, to display the 1st value (the program name) we would use

 printf ("%s",argv[0]);

When using VSCode

In the ‘Terminal’ window use ‘cd’ to change to the folder containing the .exe file

• Typically this will be in the build\Debug folder in the working folder

Type ‘.\Filename arg1 arg2 …’

• e.g. .\outDebug Hello World 1

In the Windows Powershell terminal

commands are not loaded from the current

location by default. Use .\ to give the

instruction to use the current location

A simple example

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
 int x;
 printf("Arguments ->%d\n",argc); // print the number of arguments
 for (x=0; x<argc; x++)
 printf("%s\n",argv[x]); // print each argument
 return 0;
}

LC21\simple.c

This program displays the name of the program and any parameters
supplied

When using VSCode in Debug mode

To pass arguments when debugging within VSCode you need to add
the arguments as strings to the “args” parameter in the ‘launch.json’ file:

Sets three command line

arguments

Remember that they

are all strings
View in the Watch window using
*argv@4 (or number of arguments)

In use

We can check argc and display a message if not enough/too many
parameters are passed

Parameters are then extracted by:

• Assuming they are supplied in a known order (easy)

• Using ‘flags’ for each parameter (tricky)

• Eg myprog –i in.dat –o fred.txt –d 4

Method 1

This is the easiest method to use

• We simply convert each parameter and store it in the required
variable

It can however be a bit inflexible as we have a problem where more
than one parameters is optional

e.g.
 myprog param1 param2 param3 param4

• Param 3 & 4 may be optional

• However…
• We cannot pass param4 unless we provide param3 (which we might not

wish to)

Method 2

This method is much more powerful, as we can

• Supply arguments in any order

• Make many arguments optional

But

• It is a method that requires much more programming

• But once you’ve done it you can use the code again & again!

Method 2 implementation

We use a series of flags to indicate which parameter we are passing

We scan through the parameters

• If it is a flag we then read and assign the next argument value to
the relevant variable.

• We can also have flags that require no associated arguments

An example

myprog -i in.dat –o out.dat –d

We work across the parameters (using a loop)

• Skip past argv[0] - program name

• argv[1] == ‘-i’ so we read argv[2] and store this as appropriate

• argv[3] == ‘-o’ so we read argv[4] and store this as appropriate

• argv[5] == ‘-d’ so we just set a flag (or what ever this is defined to do)

So how do we get the values? (numerical)

Remember that the values in argv[] are all strings. We may need to convert these to
the appropriate data type as required:

For numerical values:

 int atoi (char *ptr) //converts text to its integer value

 double atof (char *ptr) //converts text to its float value

• There are many others – see the help system for more

So how do we get the values? (strings)

For strings:
strcpy (char *dest, const char *source)

Which copies the contents of
▪ source into dest

You will need to include the following in your code to use this
 #include <string.h>

But there is a much easier way

We can use sscanf for all the previous!

It works like scanf, but instead of reading from the keyboard, we give it
a string to process as a parameter

sscanf (argv[1], "%d", &i);

sscanf (argv[2], "%s", filename);

This parameter replaces what we would type at the keyboard if we were using scanf

LC21\get_them.c

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Software Engineering Best Practice
	Slide 3: Development
	Slide 4: The tools used for code development
	Slide 5: Use an IDE (Integrated Development Environment)
	Slide 6
	Slide 7: The tools used for code development
	Slide 8: Creating build files
	Slide 9: Tools for creating build files
	Slide 10: Tools for creating build files
	Slide 11: The tools used for code development
	Slide 12: The practise of writing good code
	Slide 13: The Practise of Writing Good Code: Functions
	Slide 14: The Practise of Writing Good Code
	Slide 15: Example Pseudocode
	Slide 16: Best Practice – a guide
	Slide 17: The tools used for code development
	Slide 18: Debugging
	Slide 19: Debugging
	Slide 20: How not to debug!
	Slide 21: Debugging tools
	Slide 22: The tools used for code development
	Slide 23: Git Revisited
	Slide 24: Local git workflow
	Slide 25: Git workflow
	Slide 26: Useful git blogs
	Slide 27: Project final submission
	Slide 28: Software Project – Final Submission (20%)
	Slide 29: Submission Requirements
	Slide 30: Robot Testing
	Slide 31: fscanf
	Slide 32: calloc
	Slide 33: free
	Slide 34: Storing an array of structures within a structure - static
	Slide 35: Storing an array of structures within a structure – functions (1)
	Slide 36: Storing an array of structures within a structure – functions (2)
	Slide 37: Storing an array of structures within a structure – dynamic (1)
	Slide 38: Storing an array of structures within a structure – dynamic (2)
	Slide 39: Storing an array of structures within a structure – dynamic (3)
	Slide 40
	Slide 41
	Slide 42: Chapter 21
	Slide 43: Command Line Parameters
	Slide 44: main() parameters
	Slide 45: int argc
	Slide 46: char *argv[]
	Slide 47: When using VSCode
	Slide 48: A simple example
	Slide 49: When using VSCode in Debug mode
	Slide 50: In use
	Slide 51: Method 1
	Slide 52: Method 2
	Slide 53: Method 2 implementation
	Slide 54: An example
	Slide 55: So how do we get the values? (numerical)
	Slide 56: So how do we get the values? (strings)
	Slide 57: But there is a much easier way

